
Energiesystem-Resilienz in Szenarien und Transformationspfaden

<u>Dr. Hans Christian Gils</u> • DLR | Dr. Henning Wigger • DLR | Dr. Philipp Härtel • Fraunhofer IEE | Dr. Stefan Vögele • FZ Jülich | Dr. Raphael Niepelt • ISFH | Dr. Sadeeb S. Ottenburger • KIT | Dr. Reinhold Lehneis, David Manske • UFZ | Dr. Larissa Doré, Frank Merten • Wuppertal Institut | Andreas Püttner • ZSW

Resilienz wird in Klimaschutzszenarien bisher unzureichend adressiert

Versorgungssicherheit

Dersorgungssicherheit

Resilienz

ISE W

Szenarien	Strom	Wasserstoff	Power-to-Liquids	
BDI Zielpfad	H ₂ -ready Gaskraftwerke Batteriespeicher	H ₂ -Importe und Netzaufbau		
Dena <u>Leit</u> *	Kapazitäts-/Netzreserve Speicher, Importe Regelbare Erzeuger Batteriespeicher H ₂ -Importe und Netzaufbau Keine konkreten Angaben			
ISE Wege KND			Keine konkreten Angaben	
ISI Langfrist	Backup via Wasserstoff; in geringen Umfang Speicher und Wasserkraft	H ₂ -Speicherbedarf		

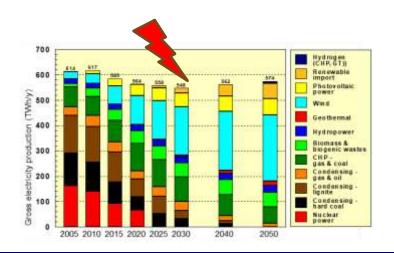
- Versorgungssicherheit in Klimaschutzszenarien bzgl. Leistungsvorhaltung im Stromsystem betrachtet
- Gewährleistet v.a. durch Gaskraftwerke, ergänzt durch Stromspeicher, Importe, Lastflexibilität
- Weniger Analysen zu sicherer H₂-Versorgung, keine konkreten Angaben zu Power-to-Liquid

Mertens, F., Doré, L., Pastowski, A., Grüner Wasserstoff und Wasserstoffderivate - Kernelemente einer nachhaltigen und sicheren Energieversorgung Deutschlands, Forschungsbericht, 2023

Einflussfaktoren auf die Resilienz von Zielsystemen und Transformationspfaden

Nachhaltige Zukunftssysteme

- Volatilität erneuerbarer Energiequellen
- Dezentralisierung
- Digitalisierung
- Sektorenkopplung
- Klimawandel

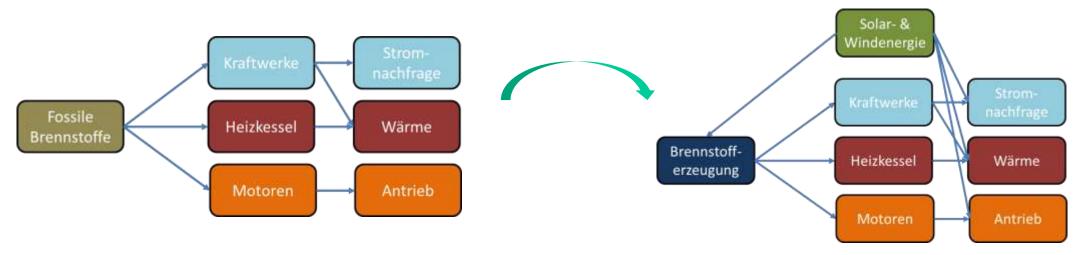

- ..

5 5 6160 6180 6200 6220 6240 6

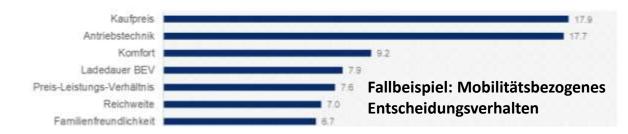
Transformationspfade

- Politische Entwicklungen
- Gesellschaftliche Entwicklungen
- Energietechnologieentwicklung
- Disruptive Ereignisse

- ...



Wirkung von Dezentralisierung und Sektorenkopplung auf die Resilienz


Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

- aufgrund eines Beschlusses des Deutschen Bundestages
- ReMoDigital FKZ: 03EI1020B

- + Erhöhte Redundanz durch mehrere Umwandlungstechnologien
- + Dezentralisierung kann Risiko räumlicher Ausbreitung mindern
- Bei der Bewertung der Wirkung von Sektorenkopplung und Dezentralisierung auf die Resilienz sind die Interessen der Akteure zu beachten.

- Höhere Abhängigkeit von der Strominfrastruktur (Erzeugung, Netz)
- Potenzielle Ausbreitung von Störungen auf Wärme-/Verkehrssektor

Systematische Betrachtung von Stressfällen und disruptiven Ereignisse

Welche Beeinträchtigung des Systems ergibt sich?

- Wo und wann tritt der Stressfall auf?
- Welche Wirkungen auf das Energiesystem gibt es?
- Wie lange dauert diese Wirkung an?
- Gibt es eine Ausbreitung durch das System?

Welche Disruptionen sind besonders relevant?

Identifizierung und **Strukturierung** mit vielfältigen Stakeholdern

Technik/Wissenschaft/Innovation Politik/Gesellschaft Wirtschaft/Okonomie Umvelt-/Waturkatastropher Cyber-/Terrorangriffe >170 disruptive Ereignisse Experteneinschätzungen Risiko-Matrix

12 disruptive Ereignisse

Vorauswahl durch

Wahrschein -lichkeit very low Auswirkung

Szenarien-Auswahl zur

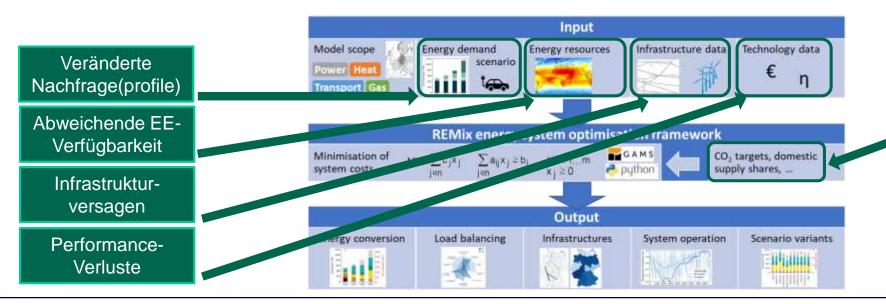
Voranalyse im Gesamtprojekt

Beschreibung priorisierter Szenarien

Ziel: Quantifizierung von Parametern für modellgestützte Analysen

Untersuchung der Systemverletzlichkeit gegenüber Stressfällen

Inzidenzbasierte Verletzlichkeitsanalyse


Modellierung von Stressfällen, z.B.:

- Extreme Kälte und Sturm
- Extreme Hitze und Überflutung
- Hackerangriff
- Physische Angriffe

Strukturelle (Inzidenz-unabhängige) Verletzlichkeit

Analyse von Systemcharakteristika

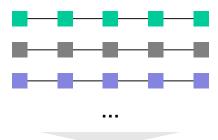
- Identifizierung möglicher Schwachstellen
- Resilienzsteigerung z.B. durch Diversifizierung
- Inselnetzfähigkeit
- Netz- und Speicherkapazität

Zusätzliche Systemdesignkriterien

Gefördert durch:

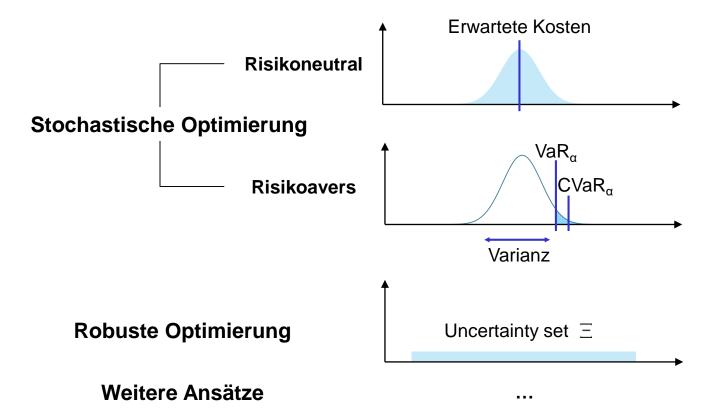
aufgrund eines Beschlusser des Deutschen Bundestage

ReMoDigital FKZ: 03EI1020B


Neue Ansätze zur Resilienzanalyse mit Energiesystemmodellen erforderlich

Bisherige Ansätze

Deterministische Optimierung


Sensitivitätsanalysen

Sensitivitätsanalysen mittels deterministischer Werkzeuge unzureichend für Optimierung unter Unsicherheit

Mögliche neue Ansätze zur endogenen Betrachtung von Unsicherheiten

Formulierungen hängen von Risiko-Operatoren ab, die das Risiko extremer Kosten/Verluste und verletzter Nebenbedingungen bemessen und ihren Umgang damit beschreiben

Resilientere Energiewendepfade durch Integration von Konfliktanalysen

- Systemische und prospektive Betrachtung gesellschaftlicher Konflikte der Energiewende
- Analyse der Wechselwirkungen zwischen verschiedenen Energiewendekonflikten
- Integration in Energiesystemmodelle, um resilientere Pfade entwickeln zu können
- Weiterentwicklung von Instrumenten, um Konflikten gegensteuern zu können

Konfliktbewertung von 6 Szenarien anhand von 11 quantifizierten Indikatoren (Auszug):

	Fokusjahr	Klimaneutrales D	RESCUE – Green Late	RESCUE- Green Supreme	BMWi TN Strom	BMWi TN H2G	BMWi TN PtG / PtX
Flächennutzungs- konkurrenz	2030						
	2050						
Regelungen zur Ausgestaltung der Energiewende	2030						
	2050						
3) Wohn- und Lebensqualität vor Ort	2030						
	2050						
Nutzung von Technologien und Infrastruktur	2030						
	2050						

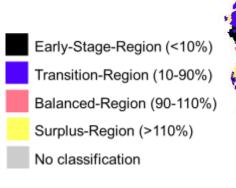
Betrachtete Indikatoren: (1) Flächennutzungskonkurrenz, (2) Regelungen zur Ausgestaltung der Energiewende, (3) Wohn- und Lebensqualität vor Ort, (4) Nutzung Technologien und Infrastruktur, (5) Lokale Teilhabe und Partizipation, (6) Genehmigungsverfahren, (7) Kosten-/Nutzenverteilung, (8) Arbeitsmarkteffekte, (9) Zielkonflikte EE-Ausbau, (10) Auswirkungen auf Rohstoffverfügbarkeit, (11) Auswirkungen im Ausland durch Importe. Jeder Indikator besteht wiederum aus mehreren Unterindikatoren.

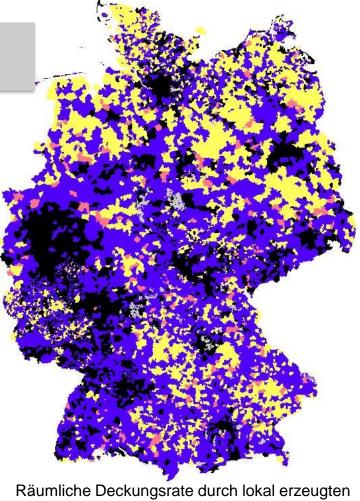
Gefördert durch:

aufgrund eines Reschlusses des Deutschen Bundestages

FKZ: 03EI1034B

Resilienzbewertung erfordert neben neuen Methoden gute Datengrundlagen


Die räumlich aufgelöste Stromerzeugung und der zugehörige Stromverbrauch zeigen mögliche Schwachstellen auch bzgl. der Resilienz im Energiesystem

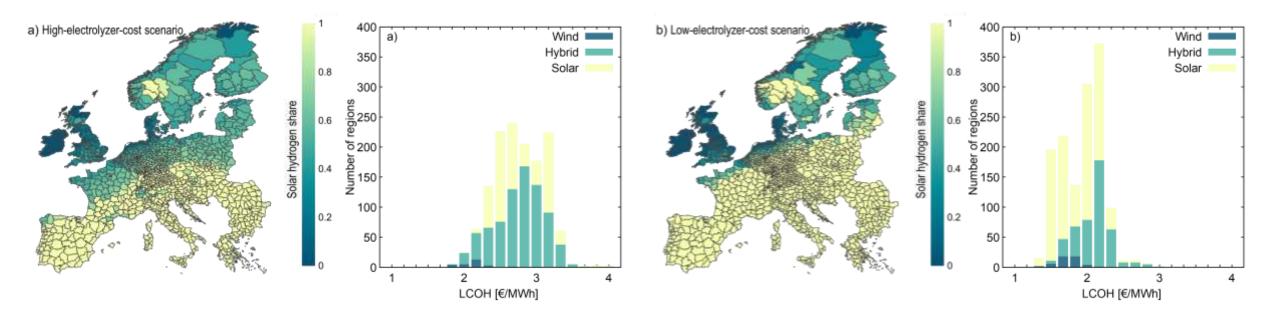

Analyse mittels Kennzahlen, z.B.: **Deckungsrate = Stromerzeugung / Stromverbrauch**

Datenbedarf modellgestützter Resilienzanalyse

- Bestandsinfrastrukturen
- **Technologiepotenziale**
- **Nachfrageentwicklung**
- Ausprägung von Stressfällen
- **Technologieentwicklung**

Lehneis, R., Manske, D., Schinkel, B., Thrän, D., Spatiotemporal Modeling of the Electricity Production from Variable Renewable Energies in Germany, ISPRS Int. J. Geo-Inf. 2022, 11, 90.

erneuerbaren Strom für das Jahr 2019



Technologieentwicklung beeinflusst Design optimaler, resilienter Zielsysteme

- Günstigere Elektrolysetechnologie verändert optimales Verhältnis Sonne zu Wind in der H₂-Produktion
- H₂-Gestehungskosten sinken überall, die Regionen rücken jedoch preislich zusammen
- Vor-Ort-Produktion wird konkurrenzfähiger

Niepelt, R, Schlemminger, M, Bredemeier, D. et al., <u>The influence of falling costs for electrolyzers</u> on the location factors for green hydrogen production, Sol. RRL 2023, 7, 2300317

Technologieentwicklungspfade bei Auslegung resilienter Systeme im Blick halten

Resiliente Verteilnetze: Microgrids & Lokale Energiegemeinschaften

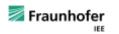
Zieldimensionen von Microgrids:

- Baustein zur Erhöhung der Resilienz zukünftiger Energiesysteme
- Netzdienstleistungen & Schwarzstartfähigkeit
- Reduktion von Kaskaden und großflächigen Blackouts durch Inselbetrieb

Techno-ökonomische Aspekte

- II. Erhöhung der Resilienz von Städten und Kommunen
- Systematischer Schutz kritischer Infrastrukturen
- Verbesserung von Daseinsvorsorge und Well-Being

- III. Bildung nachhaltiger lokaler Energiegemeinschaften
- Partizipation unterstützen
- Ungleichheit minimieren


Sozio-technische, sozio-ökonomische Aspekte

Neu entwickelte **Metriken** zeigen, dass **unterschiedliche Designs** von Microgrids, insb. ihre **räumliche Ausdehnung**, sich **unterschiedlich** auf **I.-III.** auswirken!

Welche Microgrid-Designs unterstützen die Erreichung der Ziele I.-III. möglichst gut?

Zusammenfassung

- Neue Instrumente und Methoden für die Resilienzbewertung nachhaltiger Energiesysteme benötigt
- Ergänzend bedarf es guter Daten zur zukünftigen Entwicklung von Technologien und System
- In der Energiesystemplanung greifen Robustheit der Planung und Resilienz des Zielbilds ineinander
- Analysen müssen neben techno-ökonomischen Aspekten auch das sozio-ökonomische System umfassen
- Resilientes Energiesystem muss mit hybriden bzw. sich überlagernden Gefahren umgehen können
- Um Resilienz in der Planung von Transformationspfaden berücksichtigen zu können, ist ein Modellinstrumentarium erforderlich, bei dem auch Wechselwirkungen mit Kontextgrößen berücksichtigt werden

