# **Closing the gap between** sustainable aviation fuels and fossil-based fuels

HZB • Sonya Calnan **DBFZ** • Franziska Müller-Langer FZJülich • Ralf Peters, Remzi Can Samsun, Nils Beltermann 10 October 2023

Zentrum Berlin





# Outline

#### 1. Criteria for SAFs

- What are SAFs?
- Standards for defining SAFs
- 2. (EU) Regulatory framework for SAFs
- 3. Certified technological pathways for SAFs
- 4. SAFs compared to fossil aviation fuels
  - Characteristics
  - Current status of SAFs resilience
- 5. Contributions of key projects towards resilience of SAFs
  - FZJ Methanol to Kerosene
  - DEMO-SPK
  - CARE-O-SENE
  - National and European projects with contributions from Germany
- 6. Conclusion

DBFZ









# **Criteria for SAFs**

#### What are SAFs?

Sustainable aviation fuels (SAFs) are synthetic liquid fuels for commercial aviation that are produced from a variety of feedstocks of non-fossil origin and thus can potentially reduce  $CO_2$  emissions significantly. [1]

- achieve net greenhouse gas emission reductions of at least 10% compared to the baseline emissions values for aviation fuel on a lifecycle basis.
- not be made from biomass obtained from land with high carbon stock.

[1] ICAO document, 2022: CORSIA Sustainability Criteria for CORSIA Eligible Fuels

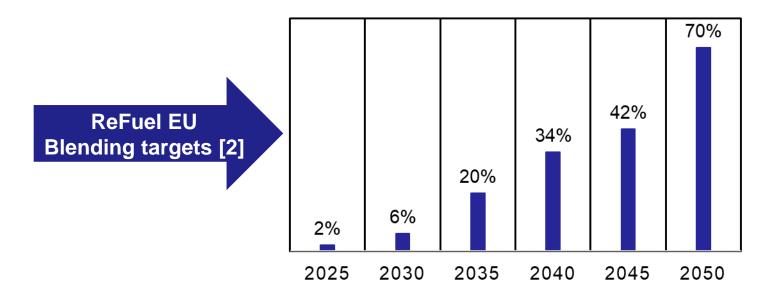
#### **Standards for defining SAFs**

- Aviation Turbine Fuel (JET A1) is compliant with ASTM D1655 and fossil based.
- Individual synthetic blending components e.g., FT SPK, HEFA SPK, etc and their blends with Jet A1, must be compliant to ASTM D7566 (equivalent to ASTM D1655).
- Compliance mandatory so that the blends can be handled by conventional infrastructure and safely used in aircraft designed for ASTM D1655 compliant Jet A1.





# **Regulatory framework for deployment of SAFS**

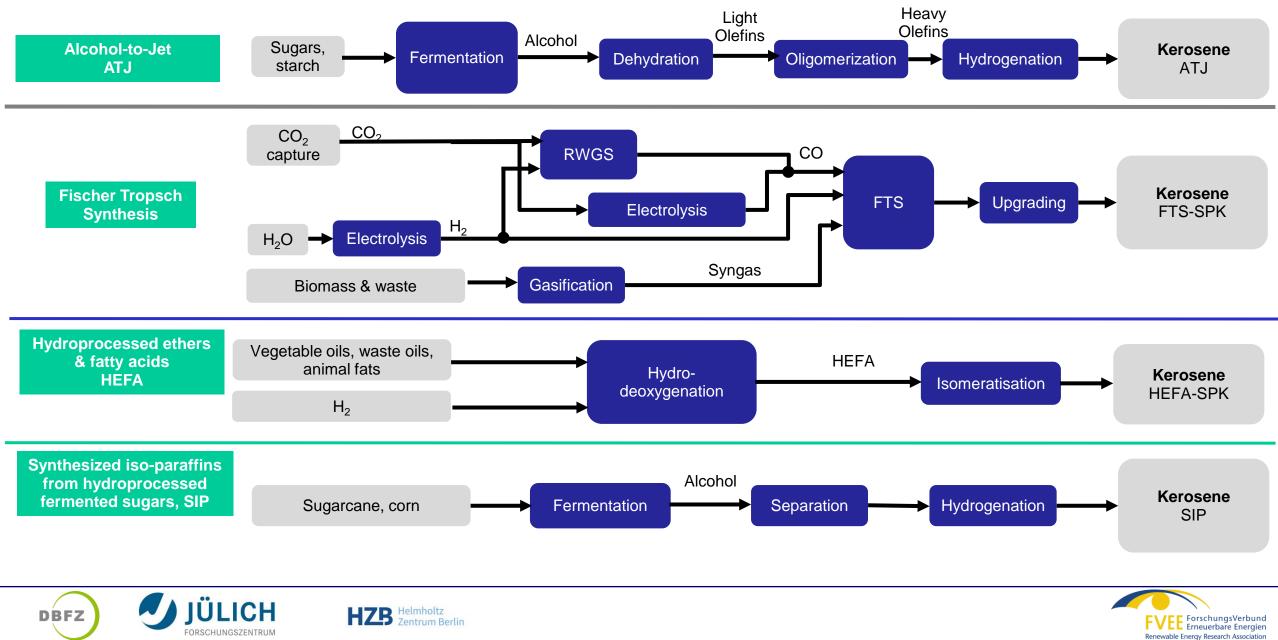

#### **Renewable Energy Directive (RED III)**

sets the EU's binding renewable target for 2030 to a minimum of 42.5% aiming for 45% to support the drive to decarbonise its economy [1].

#### **Green Deal**

DBFZ

29% of the energy mix for transport must be covered from renewable energy to enable a 14.5% reduction of greenhouse gas emissions in the sector including aviation by 2030 [1].




[1] https://ec.europa.eu/commission/presscorner/detail/en/ip\_23\_2061.| [2] Adapted from: https://www.consilium.europa.eu/en/infographics/fit-for-55-refueleu-and-fueleu/









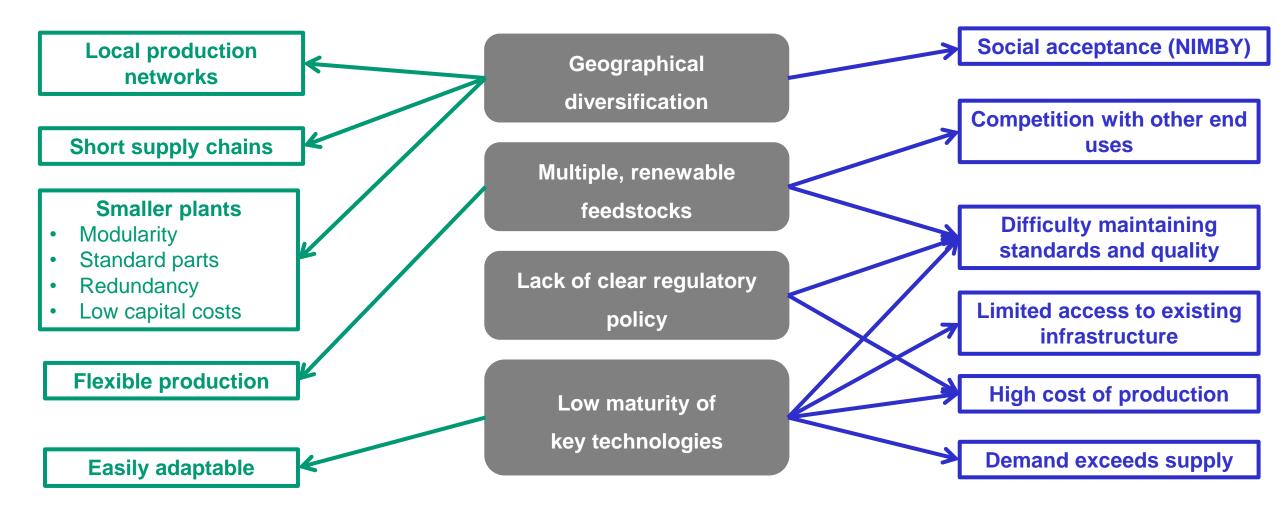
### **SAFs versus fossil aviation fuel**





| SAFS                                                                            | Characteristics              | Fossil aviation fuel                                 |
|---------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|
| 50-90% reduction in $CO_2$ , $NO_x$ , particles                                 | Green house gas<br>emissions | High                                                 |
| Low to medium                                                                   | Environmental impact         | High                                                 |
| Nascent with high potential for technological progress                          | Technology base              | Mature with limited scope for technological progress |
| Low efficiency                                                                  |                              | High efficiency                                      |
| Variable renewable feedstocks                                                   | Source                       | Single nonrenewable feedstock                        |
| Developing                                                                      | Standardisation              | Highly advanced                                      |
| Production, processing and storage are                                          | Coorrentiael distribution    | Production, processing and storage are               |
| distributed                                                                     | Geographical distribution    | centralised                                          |
| Various possibilities e.g., multiple suppliers, production for self-consumption | Supplier model               | Typically single supplier                            |






ÜLICH

FORSCHUNGSZENTRUM

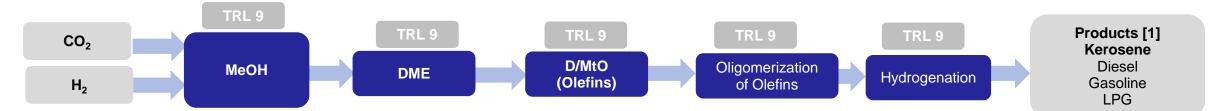


### **Resilience of SAFs**



Safeguarding a reliable, regular supply of SAF and having appropriate contingency measures in place in the event of a disruption from external forces.

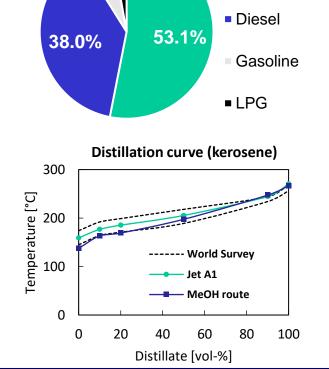







# **#FZJ | Methanol to Kerosene (MtK) pathway**




Kerosene



- Study proving competitiveness of the MtK pathway over the Fischer-Tropsch pathway [1]
- Methanol is more economical and can be imported from regions with high renewable energy resources like Saudi Arabia or Patagonia [2].
- Methanol-based kerosene and its by-products are produced with a combination of process steps with high Technology Readiness Level (TRL) of every single step [3,4]
- Around 50% of the product spectrum is in the kerosene fraction [3]
- Adjusting operating conditions can yield kerosene with a 8% aromatics fraction and thus fulfilling ASTM7566 [5]
- ....however MtK pathway is not yet licensed for the use in aviation sector

[1] Weiske, et al., Konzepte und Potenziale von Demonstrationsanlagen für die Produktion von erneuerbarem synthetischen Flugzeugtreibstoff als Beitrag zur Transformation der Reviere in NRW, ed. 580. 2022, Jülich: Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag. [2] Schorn, et al., Advances in Applied Energy, 2021. 3. [3] Schmidt, et al., Power-to-Liquids Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel. 2016, German Environment Agency/ Umwelt Bundesamt: Dessau-Roßlau [4] Liebner, & Wagner, Kohle, 2004. 120(10) pp. 323-326. [5] ASTM D7566-16b, Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. ASTM International, 2016







# **#DBFZ | Key results DEMO-SPK project**

More than 20 international partners from industry and science First of the kind project:

- Supplied nearly 600 tons of multiblend JET A-1
- **Used** multiblend JET A-1 in **flight operations** at Leipzig/Halle airport
- Quantified benefits of use of multiblend JET A-1 in aircraft instead of pure fossil-based JET A-1 fuel
  - reduced particle emissions in ground runs by 30 to 60 %
  - reduced CO<sub>2</sub> equivalent emissions by about 35%
- Produced FT-SPK using PTL (power-to-liquid) that met key requirements of the ASTM specifications
- Developed three different approaches for SAF sustainability verification and SAF accounting aspects in GHG regulation systems like the EU ETS
- Recommended improvements to the operational supply chain

DBFZ









Picelience

Tank storage DHL/EAT Leipzig (©DHL)

Multiblend JET A-1 fuelling (© DEMO-SPK 2018)

Further information on DEMO-SPK : https://www.dbfz.de/news/ergebnispraesentation-demo-spk ; https://onlinelibrary.wiley.com/doi/full/10.1002/ceat.202000024 ; https://www.mdpi.com/2076-3417/12/7/3372 https://www.sciencedirect.com/science/article/pii/S0016236120326028




HZB Helmholtz

ORSCHUNGSZENTRUM

Zentrum Berlin

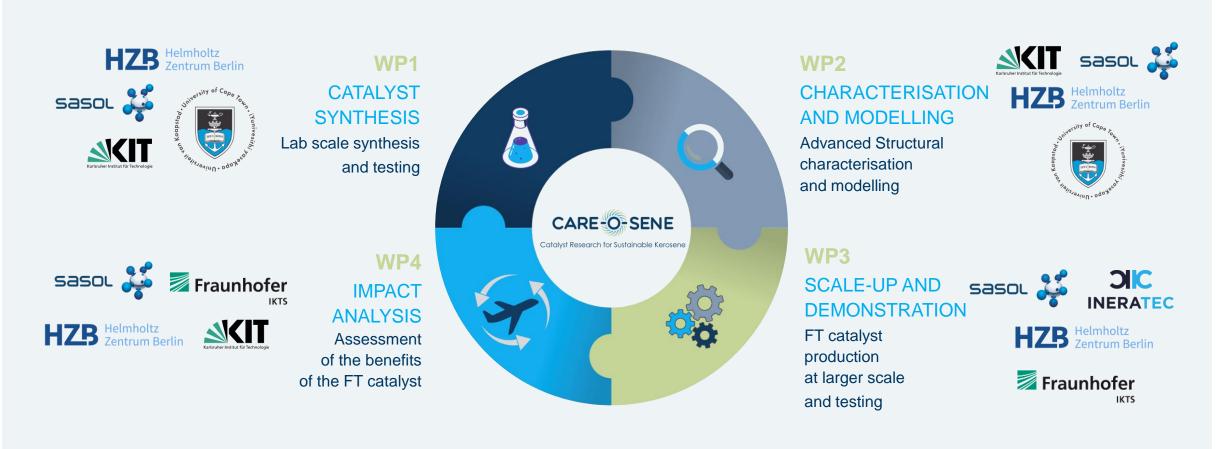
DBFZ





LPG

eNaphtha


eJet

#### **CARE-O-SENE** |Workpackages & partner involvement



Bundesministerium für Bildung und Forschung

GEEÖRDERT VOM



2022-2025







CH

FORSCHUNGSZENTRUM

DBFZ

HZB Helmholtz Zentrum Berlin

## Selection of other SAF projects with contributions from Germany

| aufgrund ein | urch:<br>Wirtschaft<br>Klimaschutz<br>nes Beschlusses<br>en Bundestages | KEROSyN<br>100      | Power to liquid plant using wind energy and the Methanol to Kerosene route                                                                               | https://www.kerosyn100.de/<br>2018 - 2022        |
|--------------|-------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| ***<br>***   |                                                                         | GLAMOUR             | GLycerol to Aviation and Marine prOducts with sUstainable Recycling using CO <sub>2</sub> removal and Fischer Tropsch Synthesis                          | https://www.glamour-<br>project.eu/<br>2020-2024 |
|              | ***                                                                     | FLITE               | Sustainable Aviation Fuel Produced From Waste-<br>Based Ethanol Resources                                                                                | https://flite.eu/about/<br>2020-2024             |
|              | <b>∀</b> *                                                              | ©CO <sub>2</sub>    | Direct electrocatalytic conversion of CO <sub>2</sub> into chemical energy carriers (e.g. SAF) in a single stage co-ionic membrane reactor               | <u>www.ecoco2.eu</u><br>2019-2023                |
|              |                                                                         | SROGRATI CONTRACTOR | Kerogreen $CO_2$ : Demonstration of SAF production from<br>renewable electricity, captured $CO_2$ and water to kerosene<br>via Fischer Tropsch Synthesis | https://www.kerogreen.eu/<br>2018-2022           |



### Conclusion

|                         | 50% SAF: Currently certified maximum SAF blend                                                             |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Status Quo              | • 70% SAF: ReFuel EU aviation fuel blending target by 2050                                                 |  |  |  |
|                         | Multiple renewable feedstocks possible for SAFs                                                            |  |  |  |
|                         | Relatively high cost of SAFs with low production volumes                                                   |  |  |  |
|                         | <ul> <li>Proof of lower CO<sub>2</sub> equivalent emissions for SAFS than Jet A-1 (100% fossil)</li> </ul> |  |  |  |
|                         | Increasing the kerosene yield in the Alcohol to Jet technology                                             |  |  |  |
| <b>Related Projects</b> | New catalysts to increase kerosene fraction of Fischer Tropsch from syngas                                 |  |  |  |
|                         | New technologies e.g. single stage hydrogenation, carbon capture, etc.                                     |  |  |  |
|                         | New processes in value chain for SAFs to reduce costs                                                      |  |  |  |
|                         | <ul> <li>Enabling standards and specifications</li> </ul>                                                  |  |  |  |
| Needs for<br>Resilience | <ul> <li>Advances in processing technologies: higher efficiency &amp; less complex</li> </ul>              |  |  |  |
|                         | Increased production levels: scaling                                                                       |  |  |  |







### Thank you for your attention

### Funding acknowledged from

GEFÖRDERT VOM









