Herausforderungen in der Produktion von Receivern für Parabolrinnenkraftwerke

Dr. Nikolaus Benz,
Dr. Thomas Kuckelkorn,
Andreas Neumayr (SCHOTT)
Wolfgang Graf (Fraunhofer ISE)
Dr. Eckhard Lüpfert (DLR)

26.9.2007
Receiver is the Key Component in Parabolic Trough Collectors

The receiver achieves high efficiency with:

- low thermal losses
 \(\rightarrow\) vacuum, absorber with low thermal emittance
- high solar absorptance
 \(\rightarrow\) efficient absorber, highly transmittent cover
- minimum of shading
 \(\rightarrow\) short bellows

[Diagram of receiver components: evacuated annulus, selective absorber coating on steel, getter to maintain vacuum, cover tube with anti-reflective coating, glass-to-metal-seal, bellow to compensate expansion]
Production Line for Receivers in Germany

- Production Line in Mitterteich, Germany
- Start: August 2006
- Invest: 15 Mio €
- 80 new jobs in production
- Annual capacity about 110 - 160 MW
Production Line for Receivers in Spain

- 2nd production line in Spain (region Seville)
- production start: spring 2008
- capital expenditure: 22 Mio €
- annual capacity about 110 - 160 MW
Project Receiver – Time Schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product and process development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning Line 1</td>
<td>Set up Line 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production set up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td>Set up Line 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Project PARASOL - BMU

Project PARFOR – BMU

Major partners:

- DLR
- FLAGSOL
- Fraunhofer Institut Solare Energiesysteme
Quality Requirements

For new power plant projects a life span of more than 20 years is required to
- match the business plans which are based on long pay back periods
- keep maintenance costs low during operation.

During operation receivers are **mechanically** and **thermally** stressed.
Most important issues are:
- Durability of glass-to-metal seal
 (break rate close to zero)
- Stability of vacuum
 (low hydrogen permeation, appropriate getter)
- durability of absorber coating
 (only small degradation of efficiency acceptable)
- abrasion resistance of anti reflective glass coating.
Known Problems

- breakage of glass-to metal-seal (2 - 2.5 %/a)
- shading of radiation shields (> 7% of length)
- degradation of coatings

bellow shields

florescent absorber tubes

Receiver failures at KJC, source: Hank Price, NREL
Selective Absorber with Multilayer Cermet for High Temperatures

Performance data:
- temperature stable up to 500 °C (short term)
- solar absorptance >= 95 %
- thermal emittance <= 14% at 400°C

Material:
- polished low-carbon steel as substrate material
- Multilayer Cermet coating

Absorber coating

\[
\begin{align*}
\alpha &= 0.95 \\
\varepsilon &= 0.13 @ 400°C
\end{align*}
\]
Absorber Coating - Accelerated Aging Test

Aging test of Fraunhofer-ISE:
samples at 450°C - 550°C for 1200 h

Result:
change in absorptance and emittance < 1%

<table>
<thead>
<tr>
<th>Aging Temp.</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 d @ 450°C</td>
<td>300°C 38 a 3,4 a</td>
</tr>
<tr>
<td>50 d @ 500°C</td>
<td>4200 a 240 a 22 a</td>
</tr>
<tr>
<td>50 d @ 550°C</td>
<td>21000 a 1200 a 104 a</td>
</tr>
</tbody>
</table>

Reflectance at 801 nm and 2130 nm over time in h
New Glass-to-Metal Seal Improves Strength Properties

- Breakage of glass-to-metal sealing (Housekeeper) is main cause for damages of receivers in existing power plants.
- Automated production process required to reduce cost and to ensure quality.
- New approach with adapted CTE yields a sealing with low stress.
- Only one glass type necessary.

Housekeeper - Method
- Stainless Steel
 - CTE = 16 * 10^-6 / K
- Glass
 - CTE = 3.3 * 10^-6 / K

SCHOTT Approach
- Metal
 - CTE = 5.5 * 10^-6 / K
- Glass
 - CTE = 5.5 * 10^-6 / K
Glass-to-Metal-Seal (GMS) – Automated Proof Test

- FEM analysis shows that the main stress is 6 times lower than in common Housekeeper sealing at working temperature.
- An automated proof test (100%) ensures the constant quality of the glass-to-metal seal and avoids defective goods in the consecutive production process.
- Optimization of production yield an minimization of defects during power plant operation.

![Diagram](image-url)

Diagram Details:
- Ca. 200°C
- Water 25°C
AR Coating with High Solar Transmittance

- Sol-Gel coating for borosilicate glass based on alcoholic dilutions with \(\text{SiO}_2 \) nano particles for improved abrasion resistance
- solar transmittance of \(> 0.96 \) achieved
- challenges in production:
 - homogenous and stable coating of long glass tubes (✓)
 - automated high precision solar transmittance test for long glass tubes (✓)

Only glass:
\[\tau = 92\% \]

With AR-coating:
\[\tau > 96\% \]
AR Coating – Abrasion Tests

Solar Transmittance

AR coating made by SCHOTT	competitive AR coating
freshly" coated: > 100 strokes | coating of unused receiver: 10 strokes
aged coated envelope: > 100 strokes | aged coated envelope: 2 strokes
Solutions for Hydrogen Problem

Problem:

- Thermo oil decomposes during operation, hydrogen is generated.
- Hydrogen permeation through steel absorber tube leads to vacuum loss and increased heat loss (factor 2-3)

Solution:

- Barrier to reduce permeation rate
- Increased getter quantity mounted in „cool“ place
Vacuum Technology - Challenges in Production

- Test hydrogen capacity of getter material for quality control
- Test of hydrogen permeation rate through stainless steel tubes
- Optimization of evacuation process
Field Test in Power Plant

- 100 Receivers operating in SEGS III, KJC since October 03
- 200 Receivers installed in SKAL-ET test loop at KJC in July and October 2004
- Successful field test, no breakage
- 2.3% increase in performance compared to previously installed tubes of competitor (FlagSol)
Nevada Solar One Power Plant

- Size: 64 MW solar only
- annual capacity: 130 GWh
- mirror area: 357,200 m²
- Project developed by SolarGenix Energy since March 2003
- Under construction since February 2006, on grid since June 07
- 20 years PPA with Nevada Power Company and Sierra Pacific Power Company

Boulder City, NV

(Courtesy of Acciona Solar Power Inc)
ANDASOL Projects in Spain

- Size: 2 x 50 MW with 7.5 h full load storage (> 1 mio m² mirror area)
- first parabolic trough plant in Europe
- Under construction since July 2006 (Plateau of Guadix, east of Granada)
- Andasol 1 on grid in July 2008

(Courtesy of COBRA)
Thank You!

(Courtesy of DLR)